Semester Syllabus for M. Sc. in Applied Chemistry (With effect from the session 2019-20)

MISSION

M1	Educate society for generations by providing transformative education with deep disciplinary knowledge and concern for environment
M2	Develop problem solving, leadership and communication skill in student participants to serve the organisation of today and tomorrow
M3	Aim for the holistic development of the students by giving them value based ethical education with concern for society
M4	Foster entrepreneurial skills and mindset in the students by giving life-long learning to make the them responsible citizens

PEO: Programme Educational Objectives

PEO1	Understand the nature and basic concepts of Chemistry Relating to the M.Sc. Degree in Chemistry
PEO2	Analyse the relationships among different concepts
PEO3	Perform procedures as laid down in the areas of study
PEO4	Apply the Basic Concepts learned to execute them

PO: Programme Outcome

PO-1	Critical Thinking: Take informed actions after identifying the assumptions that frame	
	our thinking and actions	
PO-2	Effective Communication: Will be able to speak, read, write and listen clearly in	
	person and through electronic media in English and in one Indian Language	
PO-3	Social Interation (Interpersonal Relation): Elicit views of others, mediate	
	disagreements and prepared to work in team	
PO-4	Entrepreneurship Capability: Demonstrate qualities to be prepared to become an	
	enterpreneurship	
PO-5	Ethics: Recognize different value systems including your own, understand the moral	
	dimensions and accept responsibility for them	
PO-6	Environment and Sustainability: Understand the issues of environmental contexts	
	and sustainable development	
PO-7	Life-Long Learning: Acquire the ability to engage in independent and life-long	
	learning in the context of socio-technological changes	

Course No	Course Title	Credit	Mark
ACH-401	GROUP THEORY AND SOLID STATE CHEMISTRY	03	50
ACH -402	TRANSITION METAL CHEMISTRY	03	50
ACH -403	STRUCTURE AND REACTIVITY	03	50
ACH -404	STEREOCHEMISTRY	03	50
ACH -405	THERMODYNAMICS	03	50
ACH -406	DYNAMICS	03	50
ACH -407	INORGANIC PRACTICAL	02	50
ACH -408	PHYSICAL PRACTICAL	02	50
	Tota	l 22	400

FIRST SEMESTER

SECOND SEMESTER

Course No	Course Title	Credit	Mark
ACH -411	METAL π -COMPLEXES AND CLUSTERS	03	50
ACH -412	BIOINORGANIC CHEMISTRY	03	50
ACH -413	ORGANIC REACTION MECHANISM - I	03	50
ACH -414	ORGANIC REACTION MECHANISM - II	03	50
ACH -415	STATISTICAL THERMODYNAMICS & HMO THEORY	03	50
ACH -416	SURFACE CHEMISTRY	03	50
ACH -417	ORGANIC PRACTICAL	02	50
ACH -418	ANALYTICAL PRACTICAL	02	50
	Total	22	400

THIRD SEMESTER

Course No	Course Title	Credit	Mark
ACH -501	INSTRUMENTAL METHODS OF ANALYSIS	03	50
ACH -502	INDUSTRIAL POLLUTION & ITS MANAGEMENT	02	50
ACH -503	INDUSTRIAL POLICY & ENTREPRENEURSHIP	02	50
ACH -504	PROJECT	16	100
	Tota	23	250

Course No	Course Title		Credit	Mark
ACH -511	COMPUTER APPLICATION IN CHEMISTRY		02	50
ACH -512	ENERGY & MATERIAL BALANCE AND NANOMATERIALS		03	50
ACH -513	INDUSTRIAL PROCESSES		03	50
ACH -514	MEDICINAL CHEMISTRY		03	50
ACH -515	SURFACTANTS AND DETERGENTS		03	50
ACH -516	PRACTICAL ON COMPUTER IN CHEMISTRY		03	50
ACH -517	INDUSTRIAL PRACTICAL		02	50
ACH -518	REVIEW		02	50
ACH -519	SEMINAR		02	50
		Total	23	450

FOURTH SEMESTER

ACH-401:	GROUP THEORY AND SOLID STATE CHEMISTRY 3 credits	
Course Objective	 To provide basic knowledge on symmetry of molecules applied throug mathematical group theory. Providing idea how the symmetry of the molecule helps to predict the usef information about the eigen functions and eigen values without solving the Schrodinger wave equation. Students will be able to solve many problems associate with structure, bonding, and reactivity of molecules. To acquire the basic understanding of the structure of solids that will be helpful f designing and developing new materials with tunable properties. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of group theory and sol state chemistry CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Symmetry and Group Theory	
	Symmetry operation, symmetry element, classification of symmetry elements, definition of group, subgroup, cyclic groups, molecular point groups, platonic solids, group multiplication table, group generators, conjugacy relation and classes, matrix representation of symmetry elements, character of a representation, reducible and irreducible representation, the great orthogonality theorem (without proof) and it explanation, properties of irreducible representation.	
UNIT-II:	Symmetry and Spectroscopy	
	Character table (explanation and significance), construction of character tables for C C_{3v} , C_{4v} and D_4 point groups, direct product, the standard reduction formul Applications of group theoretical methods for selection rules in Infrared, Raman an electronic spectroscopy.	
UNIT-III:	Solid State Chemistry	
	General idea of crystal lattice, unit cell, classification of crystals, crystal planes, Mill indices, Bragg's law and applications, determination of cubic crystal structure fro systematic absences in diffraction pattern, perfect and imperfect crystals, point defect Schottky defects and Frenkel defects, thermodynamics of Schottky and Frenkel defect bonding in ionic solids, colour centers, non-stoichiometry defects, general idea of bar theory of solids.	
TEXT BOOKS:	 Symmetry and Group Theory in Chemistry by R. Ameta, New Age International Ltd., 1st edn, 2013, New Delhi. Solid State Chemistry by D. K. Chakravarty, New Age International Limited, 1996, New Delhi. Solid State Chemistry and its Applications by A.R. West, Wiley, 1989, 2nd edition, Singapore. Principles of the Solid State by H.V. Keer, Wiley Eastern. Limited, 1993, New Delhi. 	
REFERENCE BOOKS	 Chemical Applications of Group Theory by F. A. Cotton, Wiley India (P) Ltd., 3rd edition 2009, New Delhi. Symmetry and Spectroscopy of Molecules by K. V. Ready, New Age International Ltd. 2 edn, 2009, New Delhi. 	

FIRST SEMESTER

ACH-402:	TRANSTION METAL CHEMISTRY	3 credits
Course Objective	1. Students will be familiar with various theories such as CFT, MOT their successful applications in the field of metal-ligand bonding.	
	2. To endow with idea about different micro-energy levels of metals knowledge regarding the electronic spectra.	-
	3. To offer idea concerning the correlation between the electronic magnetic properties of coordination complexes.	e structure and
Course Outcome	CO-1. Remember and understand the basic concepts/principles of t complexes	ransition metal
	CO-2. Analyse the various concepts to understand them through case stud	lies
	CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the project or field assignment as per the knowledg	ge gained in the
UNIT-I	Theories of Metal-Ligand Bonding	
	a. Crystal field theory (CFT): Splitting of d-orbital under the influenc tetrahedral, tetragonal, square planar, trigonal bipyramidal and sq fields, Streochemical and thermodynamic effect of CF splitting, C Teller effect.	uare pyramidal
	b. Molecular orbital theory (MOT): Sigma bonding in octahedr Classification of metal valence orbitals into sigma symmetry, form group orbitals (LGOs) of sigma symmetry, Formation of molecular sigma symmetry, construction of molecular orbital energy level dia only sigma bond contribution from ligands, pi bonding in octahed Classification of metal valence orbital into pi symmetry, Formation symmetry. Formation of pi MOs and construction of molecular orbi diagram involving sigma and pi contribution from pi donor ligands bonding in tetrahedral complexes.	ation of ligand ular orbitals of gram involving tral complexes, of LGOs of pi tal energy level
	c. Ligand field theory (LFT) and adjusted crystal field theory (ACFT).	
UNIT-II	Complex Equilibria and Term Diagram	
	a. Complex Equilibria: Types of complex equilibria in solution and ty equilibrium constant (stability constant), The complex formation Determination of stability constant by spectrophotometric method a method, Stabilization of unusual oxidation state.	on functions, and pH titration
	b. Term Diagram: Russell-Saunders or L-S coupling scheme, Term sy derivation by Pigeon-Hole diagram especially for p ⁿ and d ⁿ confi electron repulsion parameters and spin-orbit coupling parameters weak crystal field on S, P, D, F, G, H and I terms, Orgel diagra configuration, Term interaction and the energies of the levels.	guration, Inter- , The effect of
	 c. Correlation diagram: Strong field configuration of O_h symmetry, descending symmetry, correlation diagram for d² and d³confugur. Sugano diagram (qualitative explanation and significance). 	
Unit-III	Electronic Spectral and Magnetic Properties of Metal Complexes	
	a. Electronic spectral properties of metal complexes: Introduct experimental recording of the spectra, selection rules (mechanism transition, orbital selection rule, Laporte rule or purity selection rules rule), Relaxation of selection rules (departure from cubic symme vibronic coupling), Nature of electronic spectral bands with re	n of electronic s, spin selection try d-p mixing

	 intensity and bandwidth, Classification of electronic spectra. Ligand field spectra of octahedral and tetrahedral complexes and evaluation of Dq, B' and beta(β) parameters for the complex with T₁ ground state and A₂ ground state, Spectrochemical and nephlelauxetic series, charge transfer spectra. b. Magnetic properties of metal complexes: Origin of magnetic behavior, concept of magnetic susceptibility, dia, para, ferro and antiferro magnetism, magnetic moments from multiple width cases, quenching of orbital magnetic moment by crystal field, spin-orbit coupling and anomalies magnetic moments, Spin-crossover in coordination compounds. 		
TEXT BOOKS	 Advanced Inorganic Chemistry by F. A. Cotton and G. Wilkinson, Wiley India (P) Ltd., New Delhi, 6th edition, 1999. Inorganic Chemistry (Principles of Structure and Reactivity) by James E. Huheey, Ellen A. Keiter, Richard L. Keiter and Okhil K. Medhi Pearson Education, 4th edn, 2006. Inorganic Chemistry by G. L. Miessler and D. A. Tarr, Pearson Education, 3rd edn, 2004. Fundamental concepts of Inorganic Chemistry(vol-5, and vol-6) by Asim K. Das and Mahua 		
REFERENCE	Das, CBS publishers and distributors, 2nd Edition,2019. 1. Selected topics in Inorganic Chemistry by Wahid U. Malik, G. D. Tuli, R. D. Madan, S.		
BOOKS ACH-403:	Chand and Company Ltd., New Delhi, Revised Edition, 2010. STRUCTURE AND REACTIVITY 3 credits		
Course Objective	 Understanding the basic concepts about nature of bonding in organic molecules, reaction mechanisms of various organic reactions with respect to their the structure and conformational aspects. Imparting knowledge in the theory and applications of various organic reactions and their importance in various scientific fields. 		
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of organic structure and reactivity CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 		
UNIT-I:	Nature of Bonding in Organic Molecules		
	Delocalized chemical bonding, Conjugation, Cross conjugation, Resonance, Hyperconjugation, Bonding in fullerenes, Tautomerism. Aromaticity in benzenoid and non-benzenoid compounds, Alternant and non-alternant hydrocarbons, Huckel's rule, energy levels of pi-molecular orbitals of simple systems, Annulenes, Anti-aromaticity, Homo-aromaticity, Bonds weaker than covalent-addition compounds.		
UNIT-II:	Reaction Mechanism: Structure and Reactivity		
	Types of mechanisms, Types of reactions, Thermodynamic and kinetic requirements, Kinetic and thermodynamic control, Hammond's postulate, Potential energy diagrams, Transition states and intermediates, Methods of determining mechanisms, Hard and soft acids and bases, Effect of structure on reactivity: Resonance and field effects, Steric effect, Quantitative treatment, The Hammett equation and linear free energy relationship, Substituent and reaction constants, Taft equation.		
UNIT-III:	Reagents in Organic Synthesis		
	Gilman's reagent, Lithium dimethyl cuprate, Lithium diisopropyl amide, DCC, 1,3- Dithiane, Trimethyl sillyl iodide, Tri-n-butyl tin hydride, Osmium tetroxide, Selenium dioxide, Phase transfer catalysis (Crown ether, Merrifield resin, Wilkinson's catalyst), Dichloro dicyano benzoquinone (DDQ).		

TEXT BOOKS: REFERENCE BOOKS:	 Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York) Organic Chemistry, Sixth Edition, Morrison and Boyd, Pearson India; 2016 Peter Sykes, A Guidebook to Mechanism in Organic Chemistry, 6th Edition, Pearson Education Ltd., England, 2013. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014. Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerry March (Wiley Eastern Limited) W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010. 	
ACH-404:	STEREOCHEMISTRY 3 credits	
Course Objective	 Understanding the basic concepts about structure and three dimensional conformations of various organic molecules and their role in various reactions Imparting knowledge in the theory and applications of various organic reactions with their stereochemical aspects and their importance in various scientific fields. 	
Course	CO-1. Remember and understand the basic concepts/principles of stereochemistry	
Outcome	CO-2. Analyse the various concepts to understand them through case studies	
	CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course	
UNIT-I:	Chirality, Fischer projection and R and S notations, Threo and erythro nomenclature, E and Z nomenclature, Optical isomerism in biphenyls and allenes, Concept of Prostereoisomerism and Assymetric synthesis (including enzymatic and catalytic nexus), Conformation of a few acyclic molecules (alkanes, haloalkanes), Conformation of cyclic systems having one and two sp2 carbon atoms.	
UNIT-II:	Dynamic stereochemistry: Conformation and reactivity, Selection of substrates, Quantitative correlation between conformation and reactivity, (Weinstein-Eliel equations and Curtin-Hammett principles), Conformational effects on stability and reactivity in acyclic compounds (ionic elimination, intramolecular rearrangements, NGP) and in cyclic systems, (Nucleophilic substitution reaction at ring carbon, Formation and Cleavage of epoxide rings, Addition reactions to double bonds, Elimination reactions).	
UNIT-III:	Molecular dissymmetry and chiroptical properties, Linearly and circularly polarised lights, Circular birefringence and circular dicroism, ORD, Plane curves, Cotton effect, Rotatory Dispersion of ketones, Axial haloketone rule, the Octane rule. Helicity rule.	
TEXT BOOKS:	 D. Nasipuri, Stereochemistry of Organic Compounds Principles and Applications, New Age International Publishers, 3rd Edition, 2011 Stereochemistry: Conformation and Mechanism by P.S. Kalsi New Age Publishers; Tenth Edition, 2019 	
	 Stereochemistry of Organic Compounds by Ernest L. Eliel Wiley; 1st Edition, 2008 Advanced organic chemistry, by Jagdamba Singh, L D S Yadav, Pragati Prakashan, 2019 	
REFERENCE BOOKS:	 I. L. Finar, Organic Chemistry Vol. I & Vol. II, Longman (Cambridge), 2011. W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. 	
	3. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and	

	Synthesis, Springer, 5th Edition, 2010.		
ACH-405:	THERMODYNAMICS 3 credits		
Course Objective	 Understanding the basic concepts about thermodynamic properties Imparting knowledge in the theory and applications of various aspects of thermodynamics and their importance in chemical and biological systems. 		
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of thermodynamics CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	he	
UNIT-I:	Classical Thermodynamics		
	Brief resume of the concepts of laws of thermodynamics, Free energy, chemic potential and entropy, Third law of thermodynamics and determination of entrop Entropy and probability, Boltzmann-Planck equation, Partial molar properties (parti free energy, molar volume and molar heat content), Their significance ar determination. Concept of fugacity and its determination.	oy, ial	
UNIT-II	Thermodynamics of Living Systems		
	Bioenergetics and thermodynamics, Phosphate group transfer and ATP, Biologic oxidation-reduction reactions.	cal	
UNIT-III	Non-Equilibrium Thermodynamics		
	Microscopic reversibility, Entropy productions and irreversible process, Different typ of forces and fluxes, Steady states & Cross phenomena, Phenomenological equation Onsager reciprocity theorem, Chemical Reactions.		
TEXT BOOKS:	 Text Book of Physical Chemistry (Vol-1-4) by K.L. Kapoor, McGraw-Hill, 6th ed., 2020 Physical Chemistry by D.N. Bajpai, S. Chand Publishing. 2001 Principles of Physical Chemistry by Puri, Sharma & Pathania, Vishal Publishing Co., 47th ed., 2020 Physical Chemistry by Atkins, Oxford University Press, 11th ed., 2018 		
REFERENCE BOOKS:	 Physical Chemistry Through Problems by Dogra & Dogra, New Age International Private Limited, 2015 Chemical Thermodynamics by Rastogi & Mishra, 6th ed., 2018 Thermodynamics for Chemists by S. Glasstone, Krieger Pub Co, 1972 Molecular Thermodynamics by McQuarrie & Simon, University Science Books, 1999 Principle of Biochemistry by A.L. Lehninger. WH Freeman, 7th ed. 2017 	l	
ACH-406:	DYNAMICS 3 credits		
Course Objective	 To give an overview of chemical kinetics including fast reaction an electrochemistry To elucidate students about the physical significance of catalysis in terms understanding the mechanism of the process. To provide in-depth knowledge on chemical kinetics, fast reactions, catalysis an electrochemistry. 	of	
Course Outcome	CO-1. Remember and understand the basic concepts/principles of dynamics CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the	he	

	course	
UNIT-I:	Chemical Kinetics	
	Theories of reaction rates, Collision theory, Transition state theory, Arreand the activated complex theory, Reaction between ions, Salt effect Kinetics, Kinetic and Thermodynamic concept of Reactions, Treatment reaction (Lindemann-Hinshelwood and Rice-Ramspeger-Kassel-Matheories), Dynamic chain ($H_2 + Br_2$ reaction, pyrolysis of CH ₃ CHO, Dethane).	ct, Steady-State of unimolecular arcus (RRKM)
UNIT-II:	Catalytic & Fast Reaction	
	 Kinetics of Catalytic Reactions: Acid-base Catalysis, Enzyme Catalysis & Heterogeneous Catalysis. Fast reactions: General feature, Study of Fast reactions by relaxation, St Flash photolysis. 	-
UNIT-III:	Electrochemistry	
	Interionic attraction theory and Debye-Huckel treatment, Derivation of C law and its verification and modification, Activities, activity coefficients treatment, Debye-Huckel-Bronsted equation, Salt effect, Determinat coefficients from solubility method, Ion association, Determination of dissociation constant of weak electrolytes by Shedlovsky method and b Nernst equation, redox systems, electrochemical cells.	, Debye-Huckel ion of activity thermodynamic
Text Books:	 Chemical Kinetics by K.J. Laidler, Pearson; 3rd edition, 1997 Textbook of Physical Chemistry [Vol. 5] by K L Kapoor, McGraw Hill, 2014 Principles of Physical Chemistry by B.R. Puri, L.R. Sharma, M.S. Pathania, Vishal Publishing Co, 47th ed. 2016 An Introduction to Electrochemistry by S. Glasstone, Affiliated East-West Press Pvt. Ltd. 2008 	
Reference Books	 Advanced Physical Chemistry by D.N. Bajpai, S. Chand; 2nd ed. 1992 Atkins' Physical Chemistry by P. W. Atkins and Julio de Paula, , Oxford; 10th ed. 2014 Modern Electrochemistry (Vol-I) by Bockris & Reddy, Springer, 2nd ed. 1998 Reaction Kinetics by Pilling & Seakins, Oxford University Press, 2nd ed. 1996 Physical Chemistry Through Problems by Dogra & Dogra, New Age International Private Limited, 2015 	
ACH-407:	INORGANIC PRACTICAL	2 credits
Course Objective	 Understanding the basic concepts behind the separation cations and anions. To analyze the principles behind the identifications of different radicals. Apply the principles of Common ion effect and solubility effect in qualitative analysis Demonstrate and use the different reagents for identifications of cations and anions 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of in analysis CO-2. Analyse the various concepts to understand them through case stude CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge course 	lies
	Analysis of an inorganic mixture containing not more than 6 radicals. T include rare earth like Tungstate, Vanadate, Molybdate and Cerium	

	matters and other interfering radicals will also be included. Organic radicals are excluded.
BOOKS:	 Vogel's Qualitative Inorganic Analysis, 7th edition; Revised by G. Svehla. Vogel's Text Book of Quantitative Chemical Analysis, 5th Revised by G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denny. Advanced Practical Inorganic Chemistry, 22nd edition; By Gurdeep Raj
ACH-408:	PHYSICAL PRACTICAL 2 credits
Course Objective	 Understanding the basic concepts behind physical analysis and methods. To appply the principles of physical chemistry in the quantitative analysis. Demonstrate and use the different instruments, such as Conductivity meter, potentiometer, colorimeter, PH meter, polarimeter, UV-Visible spectrophotometer, in chemical analysis. Verify Oswald's Dilution law taking suitable reaction system.
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of physical methods in analysis. CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge gained in the course
	 Determination of ionization constants of weak acids and verification of Oswald's Dilution law. Conductometric titration of Strong/Weak acid with Stron/Weak base Conductometric titration of a mixture of HCl+CH₃COOH with NaOH Potentiometric titration of strong acid with strong base. Verification of Beer's Lambert Law and unknown concentration determination. Verification of additivity rule spectrophotometrically. Determination of temperature coefficient and energy of activation of hydrolysis of ethyl acetate. To study the complex formation between ammonia and Cu⁺². Determination of unknown dextrose solution by polarimetry Study of inversion of cane sugar in acid medium by polarimetry.
BOOK:	 Experimental Physical Chemistry by Das and Behera Practical Physical Chemistry by B. Vishwanathan & P.S. Raghavan Experimental Physical Chemistry by V.D. Athawale SECOND SEMESTER

SECOND SEMESTER

ACH-411:	METAL π -COMPLEXES AND CLUSTERS	3 credits
Course Objectives:	 To provide knowledge on the CO ligand as well as its analogs, and to the synergism between the ligand to metal forward σ-donation and ligand backward π-donation observed in a metal-ligand interaction. To know the concept of cluster compounds of transition metals and to the theoretical models that explain the bonding of cluster compounds. To provide knowledge about polyacids and their properties. 	the metal to
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of meta and clusters CO-2. Analyse the various concepts to understand them through case studi CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge 	les

Page 11 of 24

	the course	
UNIT-I	Carbon Monooxide Complexes	
	Metal carbonyls, structure and bonding, vibrational spectra of metal of bonding and structural elucidation, important reaction of metal carbonyls anions and carbonylate hydride, carbonyl halides and related compound M-C bond in carbonyls.	, carbonylate
UNIT-II	Complex of Carbon Monoxide Analogs	
	 (a) Preparation, bonding and important reaction of transition metal conisocyanide, cyanide, dinitrogen, carbon disulphide and nitrogen metal (b) Transition metal to carbon multiple bonded: compounds chemistry carbynes. 	onoxides.
UNIT-III	Metal Cluster and Polyacids	
	Metal cluster: Occurrence of metal-metal bonds in metal complexes, metal cluster. Metal carbonyl type clusters. Anionic and hydride cluster synthesis, super large cluster, electron counting in medium size cluster (Capping rule), Isolable relationship, cluster of Fe, Ru, Os groups. Cluster Ir groups. Cluster of Ni, Pd, Pt groups. Catalysis by cluster. Isopoly and heteroply acids and salts.	r. Method of Wade's rule,
TEXT BOOKS:	1. Advance Inorganic Chemistry by F.A. Cotton, G. Wilkinson & C. M	Aurillo. Wiley
	 Publication, 6th edition, 1999. Inorganic Chemistry (Principles of Structure and Reactivity) by James E. A. Keiter, Richard L. Keiter and Okhil K. Medhi, Pearson Education, 4th Inorganic Chemistry by G. L. Miessler and D. A. Tarr, Pearson Education, 	Huheey, Ellen edn, 2006.
REFERENCE BOOKS	 Comprehensive Coordination Chemistry, by Wilkinson, Gillarsand, Per 1989. Modern Aspect of Inorganic Chemistry by Emelius and Sharpe, Routledge PLC, England, 4th revised edition, 1978. 	-
ACH-412:	BIOINORGANIC CHEMISTRY	3 credits
Course Objective	 To introduce the cross disciplinary aspects of chemistry and biol protein structure, conformation, and the importance of transition r storage and carrier proteins as well as in enzymes. To introduce the structure and function of oxygen storage and transp photosynthetic system, and enzymes. To provide knowledge of coordination chemistry in biology. 	netal ions in
Course	CO-1. Remember and understand the basic concepts/principles of	bioinorganic
Outcome	chemistry CO-2. Analyse the various concepts to understand them through case stud CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowled the course	
UNIT-I	Biomolecules and their Roles in Metal Ions Storage and Transportation	n
	Amino acids, peptides and proteins, structures of proteins, Ramacha lipids, lipid bilayer, biological membranes, chemistry of biological molecules like ADP, ATP, FAD, NADP, nucleotides. Biologically impions (Na, K, Mg, Ca, Cu, Fe, Zn, Co and Mo) and their functions, m transport of metal ions through biological fluids and membranes, diffe passive and active transport processes and their mechanism, Na ⁺ /K ⁺ pu pump, and ionophores. Storage and transport of iron, copper and zinc, structure and function of ferritin, transferrin in regard to Fe-	ally relevant portant metal nechanism of rent types of imp, calcium siderophores,

	transportation,
UNIT-II	Role of Proteins as Oxygen and Electron Carriers
	Chemistry of porphyrin, Iron porphyrins (Heme proteins): Hemoglobin (Hb), Myoglobin (Mb) and their behavior as oxygen carrier, O_2 affinity, cooperativity and Bohr's effect, Heme protein as electron carrier with particular reference to cytochrome-c and cytochrome-450, and cytochrome oxidase. Catalases and peroxidases. Non-heme oxygen uptake protein (hemerythrin and hemocyanin). Magnesium porphyrins (Chlorophyll): Photosynthesis, the light and dark reaction (Calvin cycle). Non-heme iron-sulphur protein as electron carrier, rubredoxins and ferredoxins.
UNIT-III	Biomolecular Catalysis
	Preliminary idea about enzyme, cofactor, co-enzyme, apoenzyme, prosthetic group, metal-activated enzyme and metalloenzyme. Enzyme-substrate binding problem, carboxypeptidase, carbonic anhydrase and their biological significance, Interchangeability of zinc and cobalt enzyme. Blue-oxidases (ascorbate oxidase, cerulloplasmin, laccase) and non-blue Oxidases (amine oxidase, galactose oxidase, lysyl oxidase, cytochrome c oxidase), structure and biological functions of molybdenum nitrogenase, superoxide dismutase.
BOOKS:	 Bio-Inorganic Chemistry by Asim K Das. Bio-Inorganic Chemistry by E. Ochia. Bioorganic, BioInorganic and Supramolecular Chemistry by P. S. Kalsi and J. P. Kalsi. Inorganic Chemistry (4th Edn) by Huheey, Keiter, Keiter and Medhi. Bioinorganic and Suparmolecular Chemistry by A. Bhagi and G. R. Chatwal.
ACH-413:	ORGANIC REACTION MECHANISM – I 3 credits
Course Objective:	 Understanding the basic concepts about the way organic reactions are taking place and also to make the students understand the mechanisms of different organic reactions including various stereochemical, mechanistic and conformational aspects Imparting knowledge in the theory and applications of various organic reactions and various spectroscopic techniques which are very important characterization techniques for different fields of science
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of organic reaction mechanism CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course
UNIT-I	The S_N2 , S_N1 , mixed S_N1 and S_N2 and SET mechanisms. The neighbouring group mechanism, Neighboring group participations by sigma and pi bonds, anchimeric assistance. Classical and nonclassical carbocations, phenonium ions, norbornyl system, common carbocation rearrangements, application of NMR spectroscopy in the detection of carbocations. The S_NI mechanism. Nucleophilic substitution at an allylic, aliphatic trigonal and a vinylic carbon. Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium, phase transfer catalysis, ambident nucleophile, regioselectivity.
UNIT-II	Alipahatic Electrophilic Substitution mechanism: S_E1 , S_E2 and S_E^I mechanisms, Effect of substrate, leaving group and solvent, Reactions (hydrogen exchange, migration of double bonds, keto-enol tautomerism, halogenation, aliphatic diazonium

	coupling, Stork-enamine reaction).	
	Aromatic electrophilic substitution mechanism: Structure reactivity relationship in mono-substituted benzene, ring isomer proportions, orientation in benzene ring with one or more than one substituent, Orientation in other ring systems, Vilsmeir - Haach reaction, Pechmann reaction.	
UNIT-III	Aromatic Nucleophilic Substitution mechanism: Introduction to different mechanisms, Aromatic nucleophilic substitutions (S_NAr , S_N1 aryne), Effect of substrates, leaving groups, and nucleophile, Reactions: Nucleophilic displacement in areno-diazonium salts by different nucleophiles, Chichibabin reaction. Free radical Substitution: Intermediates, Reaction at sp ² carbon, Reactivity in aliphatic substrates, Reactivity at bridge head position, Reactivity in aromatic substrates.	
TEXT BOOKS:	1. Organic Reactions and Their Mechanisms by P S Kalsi, New Age International Private Limited; Fifth edition, 2020	
	2. Organic Reaction Mechanisms by Raj K. Bansal, New Age International Privat Limited, 2012	
	3. Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York)	
	4. Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry, Oxford University Press, 2014.	
REFERENCE BOOKS:	 Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerr March (Wiley Eastern Limited) W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction 	
	and Synthesis, Springer, 5th Edition, 2010.	
ACH-414:	ORGANIC REACTION MECHANISM – II3 credits	
Course Objective:	 Understanding the basic concepts about the way organic reactions are taking place and also to make the students understand the mechanisms of different organic reactions including various stereochemical, mechanistic and conformational aspects Imparting knowledge in the theory and applications of various organic reaction and various spectroscopic techniques which are very important characterization techniques for different fields of science 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of organic reaction mechanism CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I	Addition to carbon-carbon multiple bonds, Electrophilic, Nucleophilic and Fre radical addition, Orientation and Reactivity, Addition to cyclopropanes, Reactions Hydroboration, Michael reaction, Sharpless Asymmetric epoxidation. Addition to carbon-heteroatom multiple bonds: Mechanism and reactivity, Reactions	

UNIT-II	Elimination mechanism: E_1 , E_2 , E_1CB and E_2CB mechanisms, Orientation, Effect of substrate, base, leaving group and medium, Orientation of double bond, Sayetzeff and Hoffman rules, Pyrolytic elimination reaction, Oxidative elimination (oxidaton of alcohol by chromium, Moffatt oxidation). Reactions: Cleavage of quaternary ammonium hydroxides, Chugaev reaction, Shapiro reaction.	
UNIT-III	General mechanistic considerations – nature of migration, migratory aptitude, memory effects. A detailed study of the following rearrangements, Wagner-Meerwein, Favorskii, Carbene intermediate, Arndt-Eistert synthesis, Neber, Nitrene intermediates (Beckmann, Hofmann, Schmidt, Lossen, Curtius), Baeyer-Villiger, Shapiro reaction, Von-Richter, Sommelet-Hauser rearrangement.	
TEXT BOOKS:	 Organic Reactions and Their Mechanisms by P S Kalsi, New Age International Private Limited; Fifth edition, 2020 Organic Reaction Mechanisms by Raj K. Bansal, New Age International Private Limited, 2012 Mechanism and Theory in Organic Chemistry by Lowry and Richardson (Harper Row Publishers, New York) Jonathan Clayden, Nick Greeves, and Stuart Warren. "Organic Chemistry," Oxford University Press, 2014. 	
REFERENCE BOOKS:	 Advanced Organic Chemistry: Reaction Mechanism and Structure by Jerry March (Wiley Eastern Limited) W. Carruthares, Iain coldham, Modern Methods of Organic Synthesis South Asia Edition, Cambridge University Press, Fourth Edition, 2015. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry Part B: Reaction and Synthesis, Springer, 5th Edition, 2010. 	
ACH-415:	STATISTICAL THERMODYNAMICS & HMO THEORY 3 credits	
Course Objective	 Understanding the basic concepts about Statistical Thermodynamics and HMO Theory. To elucidate students about the physical significance of Classical and Quantum Statistical Mechanics, Partition Functions and Huckel Molecular Orbital Theory To provide in-depth knowledge on the application of Classical and Quantum Statistical Mechanics, Partition Functions and Huckel Molecular Orbital Theory. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of statistical thermo- dynamics and HMO theory CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I	Classical and Quantum Statistical Mechanics	
	Concept of probability, Starling approximations, Most probable distribution, System, Phase Space, μ-Space, Υ-Space, Liouville's Theorem, Statistical Equilibrium, Brief Concepts on Ensembles, Canonical, Grand Canonical and Micro-canonical ensembles. Bose-Einstien statistics, Fermi-Dirac statistics and Maxwell-Boltzmann statistics	
UNIT-II	Partition Functions & Statistical Thermodynamic Properties of Solids	
	Significance of partition function, Calculation of thermodynamic properties and equilibrium constant in terms of partition functions, Evaluation of transnational,	

	vibrational and rotational partition function for monoatomic and poly gases, electronic partition function.	vatomic ideal
	Some thermal characteristics of crystalline solids, Classical treatme Einstein Model, Debye Modification, Limitation and modification of Del	
UNIT-III	Huckels Molecular Orbital Theory	
	Huckel theory of conjugated systems (Ethylene, Allyl systems cyclopropenyl, cyclobutadiene, bicyclobutadiene, H_3^+ , H_3 and H_3^-), C bond order, charge density, free valence index, Application of group t simplification of MO determinants of 1,4- butadiene and naphthalene.	alculation of
BOOKS	 Physical Chemistry by D.N. Bajpai Statistical Thermodynamics by M. C. Gupta Introduction to Quantum Chemistry by A.K. Chandra Notes on Molecular Orbital Calculations by J.D. Roberts 	
REFERENCE BOOKS:		
	3. Peliti, Luca (2011). Statistical Mechanics in a Nutshell. Princeton U Press. p. 417. ISBN 978-0-691-14529-7.	Iniversity
ACH-416:	SURFACE CHEMISTRY	3 credits
Course Objective	 Demonstrate physical chemistry aspects of surface chemistry related to phase rule, polymer chemistry and theories of adsorption. To elucidate students about the physical significance of phase rule, polymer chemistry, kinetics of polymerization, and theories of adsorption To provide in-depth knowledge on the application of phase rule, polymer chemistry and theories of adsorption. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of surface CO-2. Analyse the various concepts to understand them through case stude CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/create the project or field assignment as per the knowledge the course 	lies
UNIT-I	Phase Rule	
	Concept of Equilibrium between phases, Derivation of phase rule, Id Liver Rule, Brief concept on one and two component system, Applicat rule to three component systems of both solids and liquids.	
UNIT-II	Adsorption	
	Surface tension, Capillary action, Adsorption, types of adsorption, Giblisotherm, Freundlich's adsorption isotherm, Langmuir's adsorption isotherm and its applications, Heat of estimation of surface areas of solids from solution adsorption studies.	herm and its
UNIT-III	Macromolecules	
	Polymer-definition, Classification of polymer, Polymer structure, Nur and molecular weight average, Step growth & chain growth polymerization of polymerization, Stereochemistry of polymerization.	
BOOKS:	 Text Book of Physical Chemistry Vol-1-4 by K.L. Kapoor Physical Chemistry by D.N. Bajpai Physical Chemistry by A.W. Atkins Introductory Quantum Chemistry by A.K. Chandra 	

	 Polymer Science by Gowariker, Viswanathan & Sreedhar Polymer Science & Technology by J. R. Fried 	
ACH-417:	ORGANIC PRACTICAL	2 credits
Course Objective	 Understanding the basic concepts and principle of estimations. To analyze the principles behind the identifications of different ele Demonstrate and use the different reagents for identifications and inorganic complexes. 	ements.
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of inorganic radica analysis CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge gained the course 	
	 Increase Isolation and identification of multi-functional compounds in a mixtuorganic compounds. Preparation of; a) Benzoin, benzil and benzillic acid from benzaldehyde. b) p-idotoluene from p-toluidene. c) Ethyl acetoacetate from ethyl acetate. Estimation of; a) Nitrogen by Kjeldahl method. b) keto group by gravimetric method. 	ure of two
BOOKS:	Advanced Practical Organic Chemistry, 3/e by N K Vishnoi	
ACH-418:	ANALYATICAL PRACTICAL	2 credits
Course Objective	 Understanding the basic concepts of analytical methods. To analyse various techniques for the estimation of organic and inorganic compounds. Apply the principles of analytical methods in identification of organic compounds. Use analytical tools for the identification of organic compounds and metal complexes. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of analytic CO-2. Analyse the various concepts to understand them through case studie CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge the course 	ies
	 Determine the pK value of an acid-base indicator. To estimate metal ions by spectrophotometric titration. To determine the pH of a given solution by spectrphotometrically. Adsorption of CH₃COOH on activated charcoal and verification of Fn & Langumir's adsorption isotherm. Simultaneous estimation of Mn and Cr in a solution of KMnO₄ and K Determination of hydrolysis constant of aniline hydrochloride. Determination of association constants of CH₃COOH by distribution between water and toluene. To study the rate of acid catalysed iodination of acetone in presence acid and acetone. 	2Cr2O7. ically. on method

	10. To study the stability constant of a metal complex.
	11. Estimation of Fe ion in a solution of Mhor's salt.
BOOK:	1. Experimental Physical Chemistry by Das and Behera
	2. Practical Physical Chemistry by B. Vishwanathan & P.S. Raghavan
	3. Experimental Physical Chemistry by V.D. Athawale

THIRD SEMESTER

ACH-501:	INSTRUMENTAL METHODS OF ANALYSIS	3 credits
Course Objectives: Course	 To understand the fundamental principles of analytical techniques. To provide idea about the electrochemical methods and to realize their significances in the diverse fields. To understand the basic concepts related to chromatography, NMR and electrochemical methods and their modern applications in the various fields. CO-1. Remember and understand the basic concepts/principles of instrumental method of 	
Outcome	analysis CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge course	
UNIT-I:	Chromatography & Imaging Analysis	
	Introduction to chromatography, Basic principles, instrumentation and Ap different chromatography (TLC, HPTLC, column chromatogra chromatography, Gas chromatography and HPLC). Principle & applications of Optical Microscopy, Scanning Electron Transmission Electron Microscope and X-ray Diffraction Analysis.	iphy, paper
UNIT-II:	NMR and Mass Spectrometry	
	NMR: Magnetic properties of Nuclei, Theory of Nuclear Magnetic Respecial reference to proton, NMR Instrumentation, Chemical shift, S de-shielding Effects, Diamagnetic anisotropy, simple spin-spin interaction, N	hielding and
	Mass spectrometry: Introduction to mass spectrum, Determination parent p peak, Use of molecular fragmentation, Mass spectra of some classes of con as hydrocarbons, alcohols, phenols, ketones, aldehydes, acids and esters rearrangement.	npounds such
UNIT-III:	Electroanalytical Method	
	Polargraphy: Basic principle, instrumentation, theory of current-voltage cur diffusion current, IIkovic equation, polarography wave and half wa Application of polarography.	ve potential.
	Cyclic voltametry anodic stripping voltametry, amperometry, conductom selective electrodes.	netry and ion
BOOKS:	 A Guide to Materials Characterization and Chemical Analysis by John P. Sibili & Sons; 1996, 2nd edition. ISBN 0-471-18633-3 X-Ray Diffraction by C. Suryanarayana, C., Norton, M. Grant, Springer; 1998, 1489901507 Electron Microscopy and Analysis by Peter Goodhew, John Humphreys, and K Beanland, CRC Press; 2000, 3rd edition. Analytical Chemistry (Theory and Practical), U.N. Dash, Sultan Chand and Soc 	ISBN: Richard

	 Spectroscopic Identification of Organic Compounds, Silverstein & Basselr, Joh Sons; 1991,5th Edition, ISBN: 0471634042 Organic Spectroscopy by V.K. Ahluwalia; Ane Books Pvt. Ltd 2011, ISBN: 978 Spectroscopy by Donald L. Pavia, Gary M. Lampman, and George S. Kriz; Cer Learning India Private, 2015, 5th ed. 	9381162156
ACH-502:	INDUSTRIAL POLLUTION AND ITS MANAGEMENT	3 credits
Course Objectives:	 To understand the basic concept of pollution related to various industries. To encourage understanding of basic and advanced concepts in industrial pollution aspects, waste water and solid waste treatment technologies. Develop technical knowledge for students' in the treatment and management of industrial waste. To expose students to different processes used for pollution and its management in industries and in research field. To develop the students to accept the challenges in industrial sectors. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of pollution and its management CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Concept and definition of Industrial pollution, History of major industrial air pollution episodes. Types and classification of Industrial air pollutants. Characterization of gaseous effluents of major industries (thermal power plant, steel, cement, aluminum, paper, fertiliser) and their health effects. Permissible limit and ambient air quality, Methods for control of gaseous air pollutants (Combustion, Absorption and Adsorption). Methods for control of particulate air pollutants (Mechanical device, Filtration, Dry scrubber, Electrostatic precipitator)	
UNIT-II:	History of major industrial water pollution episodes, Classification and types water pollutants, Characterization of some liquid effluents of major polluti (Paper Mills, Sugar industry, Iron and steel and Textile) and their health e quality standard : Drinking water quality standard, Irrigation water standard standard, methods of treatment of industrial waste water: Preliminary treatment treatment, (Sedimentation, equalization and neutralization etc.), seconda (Activated sludge technique and Trickling filter) tertiary treatment method water treatment (Evaporation, Ion exchange, Adsorption, Electrodialysis recovery, reverse osmosis).	ing industries offects, Water and effluent nent, primary ary treatment ods for waste
UNIT-III:	Classifications and types of Industrial solid wastes, Generation, disposal and management of industrial solid wastes with special reference to fly ash, red mud, heavy metals (Mercury, Lead, Arsenic, Cadmium), other organic solid wastes and radio-active wastes. Industrial sources of noise, Loudness on Decibel scale, noise levels in decibel scale, effect of noise on human health, prevention and control of industrial noise pollution.	
BOOKS:	 Industrial Pollution and Management by Arvind Kumar; Aph Publishing Corporation, 2004. Industrial Pollution and its Management by P.C. Trivedi, Aavishkar, 2006. 	
ACH-503:	INDUSTRIAL POLICY AND ENTREPRENEURSHIP	2 credits
Course Objectives:	 To understand the basic concept of industrial policy and entrepreneurshi To provide students the understanding of the economical and operational industrial policies. Develop entrepreneurial ability in students'. To understand the acts and regulations of policies in industrial sectors. 	

Course Outcome	 CO-1. Remember and understand the basic concepts/principles of poll management CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge course 	5
UNIT-I:	 a) Orissa Industrial Policy b) Industries development & Regulation Act-1951 c) Micro & small scale Industries development Act-2006 	
UNIT-II:	The Explosive Act-1884, Insecticide Act-1981, Petroleum Act-1976, Gas C 2004, Employer's liability Act-1938	ylinder Rule-
UNIT-III:	a) Water Actb) Air Actc) Environmental Protection Act	
ACH-504:	PROJECT	16 credits
Course Objectives:	 To understand and learn various industrial and R&D projects. To provide students the understanding of the project work and preparation. To enhance students' knowledge and interest in a particular technology. To cultivate student's leadership ability and responsibility to perform or given project. 	-
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of project we CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge course 	5

FOURTH SEMESTER

ACH-511:	COMPUTER APPLICATION IN CHEMISTRY	2 credits
Course	1. Understanding the basic concepts about Computer Application in Chemistry.	
Objective	2. To elucidate students about the physical significance of Computer Application in	
	Chemistry	
	3. To provide in-depth knowledge on the application of Computer Application in	
	Chemistry.	
Course	CO-1. Remember and understand the basic concepts/principles of comput	er application
Outcome	in chemistry	
	CO-2. Analyse the various concepts to understand them through case studies	
	CO-3. Apply the knowledge in understanding practical problems	
	CO-4. Execute/Create the Project or field assignment as per the knowledge gained in the	
	course	C
UNIT-I:	Introduction to Computers	
	Basic structure of a computer: The CPU, the I/O devices, the internal memory, commonly used secondary storage media. Data representation: Overview of binary, octal and hexadecimal number system. The software: Concept of low level and high level languages, Compiler interpreter, editor, operating system concepts, salient features of MS-DOS. Windows operating systems.	
UNIT-II:	Programme Development Process	

	Algorithm, Flowchart, Decision-table, elements of high level programming language Input-output statements, conditional statements, control structure, concept of data fil	
	file operations like searching, storing, with reference to C Programming.	
TEXT	1. Computational Chemistry by A.C. Norris, Wiley	
BOOKS:	2. C Programming Language by Brian W. Kernighan and Dennis M. Ritchie, PHI; 2nd edition	
	3. An Introduction to Digital Computer Design by V. Rajaraman & T. Radhakrishnan, Prentice Hall India Learning Pvt. Ltd.	
REFERENCE BOOKS:		
	ISBN 978-0321563842	
ACH-512:	ENERGY & MATERIAL BALANCE AND NANOMATERIALS 3 credi	
Course Objective:	 Learning and understanding the principles of nanomaterials, syntheses and their characterizations. Introduce students to the modern areas of nanotechnology and train them in the current topics to enable them to take up positions in industry and education research. Apply and communicate the knowledge of nanomaterials in science and technology. Enable students to apply the concepts of advanced polymers to various industrial applications. 	
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of chemistry of nanomaterials and material balance. CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 	
UNIT-I:	Energy and Material Balance	
	Energy and Thermo-Chemistry, Energy Balances, Heat Capacity of Gaseous Mixture Latent Heats, Enthalpy Changes During Phase Transfers Accompanied by Sensible Heat Changes, Enthalpy Changes accompanying Chemical Reactions.	
	Material Balances Without Chemical Reactions: Process Flow-Sheet, Material Balance Recycling Operations, Material Balances of Unsteady State Operations.	
	Material Balances Involving Chemical Reactions, Definition of Terms, Electrochemical Reactions, Recycling, Parallel and Bypassing Operations, Metallurgical Applications	
UNIT-II:	Nanomaterials and Applications	
	Nanomaterials for Solar Energy Conversion Systems. Principles of photovoltaic energ conversion (PV), Structural characteristics and concepts. Types of photovoltics Cell Physical concept of photovoltaic cells, Organic solar cells, Dye-Sensitized Solar Cell Organic-Inorganic Hybrid solar cells. Current status and future trends. Conducting and ferroelectric materials, structure and features of ferroelectric material ceramic materials, organic/inorganic hybrid materials and their applications.	
UNIT-III:	Structural Properties of Polymers and Applications	
	 (a) Structure-property relationship, stress-strain behavior, crystalline melting point effect of chain flexibility and other steric factors, entropy and heat of fusion, glass transition temperature, relationship between Tm and Tg. Effect of molecular weight, property requirements and its utilization. 	
	(b) Synthetic procedure commercial polymers (polycarbonate, polyurethan	

		(
	polymethylmethacrylate, polyethyleneterpthalate, Nylon, polys retarding and biomedical polymers	tyrene), Fire	
TEXT BOOKS:	 Semiconductor for Solar Cells by H J Moller, Artech House Inc, MA, USA, 1993. Solis State Electronic Device by Ben G Streetman, Prentice Hall of India Pvt Ltd., New Delhi. 		
REFERENCE BOOKS:	 Text Book of Polymer Science by F.W. Billmeyer Jr, Wiley. Organic Photovoltaics – Materials, Device Physics and Manufacturing Technologies, Eds. By C. Brabec, V. Dyakonov, U. Scherf), 2nd Ed., W Germany, 2014. Polymer Science by V.R. Gowariker, N.V. Viswanathan and J. Sreedha. Eastern. 		
ACH-513:	INDUSTRIAL PROCESSES	3 credits	
Course Objective:	 Learning and understanding the principles of industrial processes. Introduce students to the processes in industrial research. Applying and communicate the knowledge in science and technol industrial development. Enable students to apply the concepts of knowledge gain in vario applications. 		
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of industrial processes. CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course 		
UNIT-I:	Petroleum and coal based chemicals: Composition of petroleum, cracking processes, Commercial production of ethylene, acetylene, polymerization mechanisms, Addition, condensation, step growth, chain growth, method of polymerization, Distillation of coal.		
UNIT-II:	Oil based Industries: Oils and fats: Solvent extraction of oils, hydrogenationof oil in the manufacturing of soap, paints and varnishes.Surface active agents: classification and manufacturing of detergents usedpurpose.Fermentation Industries: A general discussion on fermentationmanufacturing of penicillin.	for cleansing	
UNIT-III:	Pesticides and Pharmaceutical industries: DDT manufacture, BHC manufacture, 2,4-D manufacture, parathion manufacture, Pharmaceutical industry		
BOOKS:	 Outlines of Chemical Technology by M. Gopala Rao and Marshall Sittig, Affilia Press Pvt. Ltd. Industrial Chemistry by B. K. Sharma, Krishan Prakashan; 2014, 17th edition. 	nted East-West	
ACH-514:	MEDICINAL CHEMISTRY	3 credits	
Course Objective:	 Learning and understanding the principles and relationship between biological activity of various drug molecules. Applying and communicate the knowledge to identify various comolecules and their uses. Develop a thorough understanding of drug mechanisms of action, stru relationships, formulations. Relate the structure and physical properties of drug molecul pharmacological activity. 	lass of drug cture-activity les to their	
Course Outcome	CO-1. Remember and understand the basic concepts/principles of chemistry chemistry.CO-2. Analyse the various concepts to understand them through case studies		

	CO-3. Apply the knowledge in understanding practical problemsCO-4. Execute/Create the project or field assignment as per the knowledge gained in the course
UNIT-I:	Advanced Medicinal Chemistry
	Drug discovery and development, Definition, outline, achievements in the field of medicinal, parameters involved in drug design physicochemical ionization, H-bonding, chelation, surface active agents, redox potentials. Drug receptor interactions isosterism, steric features of drug concept of drug receptor, Receptors, their types, location, isolation transdunction mechanism.
UNIT-II:	Strategies for Synthesis of Candidate Drug
	 Target selection Retro synthesis (the disconnection approach consecutive versus conversion synthesis including LHASA, strategic bond approach, strategic bond in ring approach, degradation of techniques in, synthetic design of venalflaxin, doxopicomine, clobutinol, nisoxetine, bropirimine.
UNIT-III:	Drug and their Applications
	Chemotherapy of cancer: veincristine and vinblastine and taxol, drug related hormones insulin, vasopressin and oxitosin, prostaglandin, histamine, antiparkinosin agents antialzehimer agents, antirheumatics and antigout agents.
TEXT BOOKS:	 Medicinal Chemistry by Alfred Burger, Interscience Publishers, Inc., New York. Introduction to the Principles of Drug Design by Smith and Williams, CRC Press; 2005, 4th edition Principle of Biochemistry by A.L. Lehninger, D.L. Nelson & Michael M Cox, 8th ed.
REFERENCE BOOKS:	 Strategy of Drug Design by Purcell, John Wiley & Sons Inc Organic Chemistry by J. Clayden, N. Greeves, S Warrens, P.Wother, Oxford University Press.
ACH-515:	SURFACTANTS & DETERGENTS 3 credits
Course Objective:	 Learning and understanding the principles of surfactant and detergents. Applying and communicate the knowledge to identify various class of surfactants and their uses. Develop a thorough understanding of surfactants and detergents and their structure- activity relationships. Relate the structure and physical properties of surfactant molecules to their biological activity.
Course Outcome	 CO-1. Remember and understand the basic concepts/principles of chemistry of surfactants and detergents. CO-2. Analyse the various concepts to understand them through case studies CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the project or field assignment as per the knowledge gained in the course
UNIT-I:	Structural Aspects of Surfactants
	Surfactants, Classification(Anionic surfactants, Cationic head surfactant, Zwitterionic surfactants, Nonionic surfactant, Biosurfactants, Gemini surfactant, double tailed surfactant, Bolaform), Synthesis of Surfactant, Behaviour of Surfactants in aqueous and nonaqueous solution, Different types of interactions, Surface activity, Surface tension, Factors for organization of surfactants and types of organized assemblies, Hydrophobic interactions, electrostatic interactions, Critical micellar concentration (CMC), Factors affecting CMC, Methods of CMC determination. Aggregation number, Shape and Size of micelle.

UNIT-II:	Characterization and Application of Surfactant Assemblies		
	Spectroscopic investigation and analytical methods, determination of polar structures of micelle, Determination of aggregation number, Industrial A surfactants, Beneficiation of minerals, micellar catalysis, Drug deliv Dispersion and foaming.	applications of	
UNIT-III:	Characterization and Application of Detergents		
	Detergents, Principal groups of synthetic detergents, Anionic deterg detergents, Non-ionic detergents, Amphoteric detergents, Industrial preparation of Detergents, Concept of hard and soft water, Removal of water, Oil and fat, General idea of Suds regulators, builders, additives, M Shampoos. theories of glyceride structure, Hydrolysis of glycerides, Use manufacturing of soap, Principle of soap cleaning, Analysis of soaps standards The use of enzymes in detergents, Catalytic hydrogenation of of Nickel from hydrogenated oil product.	methods of of hardness of Manufacture of e of oil in the as per BIS	
TEXT BOOKS:	 Industrial Chemistry by B. K. Sharma, 9th Edn. The Manufacture of Soaps other Detergents and Glycerin Edited by Edgar Woollatt. Synthetic Detergent Edited by Milwidsky. Bailey's Industrial Oil and Fat Products Vol-1 (4th Edition) Edited by Daniel Swern. 		
REFERENCE BOOKS:	 Soaps & Detergent Edited by K.S. Parasuram. Surfactants and Interfacial Phenomenon by M.J. Rosen Catalysis in Micellar and Macromolecular Systems BY E.J. Fendler and J.H 	. Fendler	
ACH-516:	PRACTICAL ON COMPUTER IN CHEMISTRY	2 credits	
Course Objective	 Understanding the basic concepts of computer application in Chemi To learn various software to solve technical problems. 	stry.	
Course Outcome	CO-1. Remember and understand the basic concepts/principles of compute CO-2. Analyse the various concepts to understand them through case studie CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge course	es	
	 Use of computer programmes like EXCEL, Chemdraw. Execution of the Software to solve problems. Development of small programmes for solving chemical problems. 		
A CH 517.		2	
ACH-517: Course	INDUSTRIAL PRACTICAL 3 Understanding the basic concepts to evaluate elements present in fea	2 credits	
Objective	 Understanding the basic concepts to evaluate elements present in fertilizer. Demonstrate the separation, purification and identification of chlorine a ammonia in supply water. Apply the principles of analytical methods in evaluation of synthesized organ compounds. Learn various laboratory techniques for identification of organic compounds. 		
Course	CO-1. Remember and understand the basic concepts/principles of organic compounds.		
Outcome	 CO-2. Analyse the various concepts to understand them through case studie CO-3. Apply the knowledge in understanding practical problems CO-4. Execute/Create the Project or field assignment as per the knowledge course 	ge gained in the	
	 Determination of percentage of purity of commercially available difference K fertilizer. Water analysis: (a) Residual chlorine in town supply water (b) Ammonial 		
	sewage water3. Determination of acid value, saponification value and iodine value of of	different oils	

	4. Preparation of indigo from anthranilic acid.	
	5. Preparation of cinnamic acid from benzaldehyde.	
	6. Preparation from flavone from o-hydroxy acetophenone.	
	7. Estimation of sulfur in isothiouronium chloride prepared from thiourea.	
	8. Separation of components from a mixture by TLC and column chromat	ography.
ACH-518:	REVIEW	2 credits
ACH-519:	SEMINAR	2 credits